Welcome!

DevOps Journal Authors: Trevor Parsons, Sematext Blog, ITinvolve Blog, Plutora Blog, Carmen Gonzalez

Related Topics: Cloud Expo, Java, SOA & WOA, Virtualization, Big Data Journal, SDN Journal

Cloud Expo: Book Excerpt

Book Excerpt: Systems Performance: Enterprise and the Cloud | Part 1

CPUs drive all software and are often the first target for systems performance analysis

"This excerpt is from the book, "Systems Performance: Enterprise and the Cloud", authored by Brendan Gregg, published by Prentice Hall Professional, Oct. 2013, ISBN 9780133390094, Copyright © 2014 Pearson Education, Inc. For more info, please visit the publisher site:

CPUs drive all software and are often the first target for systems performance analysis. Modern systems typically have many CPUs, which are shared among all running software by the kernel scheduler. When there is more demand for CPU resources than there are resources available, process threads (or tasks) will queue, waiting their turn. Waiting can add significant latency during the runtime of applications, degrading performance.

The usage of the CPUs can be examined in detail to look for performance improvements, including eliminating unnecessary work. At a high level, CPU usage by process, thread, or task can be examined. At a lower level, the code path within applications and the kernel can be profiled and studied. At the lowest level, CPU instruction execution and cycle behavior can be studied.

This chapter consists of five parts:

  • Background introduces CPU-related terminology, basic models of CPUs, and key CPU performance concepts.
  • Architecture introduces processor and kernel scheduler architecture.
  • Methodology describes performance analysis methodologies, both observa- tional and experimental.
  • Analysis describes CPU performance analysis tools on Linux- and Solaris- based systems, including profiling, tracing, and visualizations.
  • Tuning includes examples of tunable parameters.

The first three sections provide the basis for CPU analysis, and the last two show its practical application to Linux- and Solaris-based systems.

The effects of memory I/O on CPU performance are covered, including CPU cycles stalled on memory and the performance of CPU caches. Chapter 7, Memory, continues the discussion of memory I/O, including MMU, NUMA/UMA, system interconnects, and memory busses.

Terminology
For reference, CPU-related terminology used in this chapter includes the following:

  • Processor: the physical chip that plugs into a socket on the system or pro- cessor board and contains one or more CPUs implemented as cores or hard- ware threads.
  • Core: an independent CPU instance on a multicore processor. The use of cores is a way to scale processors, called chip-level multiprocessing (CMP).
  • Hardware thread: a CPU architecture that supports executing multiple threads in parallel on a single core (including Intel's Hyper-Threading Tech- nology), where each thread is an independent CPU instance. One name for this scaling approach is multithreading.
  • CPU instruction: a single CPU operation, from its instruction set. There are instructions for arithmetic operations, memory I/O, and control logic.
  • Logical CPU: also called a virtual processor,1 an operating system CPU instance (a schedulable CPU entity). This may be implemented by the processor as a hardware thread (in which case it may also be called a virtual core), a core, or a single-core processor.
  • Scheduler: the kernel subsystem that assigns threads to run on CPUs.
  • Run queue: a queue of runnable threads that are waiting to be serviced by
  • CPUs. For Solaris, it is often called a dispatcher queue.

Other terms are introduced throughout this chapter. The Glossary includes basic terminology for reference, including CPU, CPU cycle, and stack. Also see the terminology sections in Chapters 2 and 3.

Models
The following simple models illustrate some basic principles of CPUs and CPU per- formance. Section 6.4, Architecture, digs much deeper and includes implementation- specific details.

CPU Architecture
Figure 1 shows an example CPU architecture, for a single processor with four cores and eight hardware threads in total. The physical architecture is pictured, along with how it is seen by the operating system.

Figure 1: CPU architecture

Each hardware thread is addressable as a logical CPU, so this processor appears as eight CPUs. The operating system may have some additional knowledge of topology, such as which CPUs are on the same core, to improve its scheduling decisions.

CPU Memory Caches
Processors provide various hardware caches for improving memory I/O perfor- mance. Figure 2 shows the relationship of cache sizes, which become smaller and faster (a trade-off) the closer they are to the CPU.

The caches that are present, and whether they are on the processor (integrated) or external to the processor, depend on the processor type. Earlier processors pro- vided fewer levels of integrated cache.

Figure 2: CPU cache sizes

CPU Run Queues
Figure 3 shows a CPU run queue, which is managed by the kernel scheduler.

Figure 3: CPU run queue

The thread states shown in the figure, ready to run and on-CPU, are covered in Figure 3.7 in Chapter 3, Operating Systems.

The number of software threads that are queued and ready to run is an impor- tant performance metric indicating CPU saturation. In this figure (at this instant) there are four, with an additional thread running on-CPU. The time spent waiting on a CPU run queue is sometimes called run-queue latency or dispatcher-queue latency. In this book, the term scheduler latency is used instead, as it is appropri- ate for all dispatcher types, including those that do not use queues (see the discus- sion of CFS in Section 6.4.2, Software).

For multiprocessor systems, the kernel typically provides a run queue for each CPU and aims to keep threads on the same run queue. This means that threads are more likely to keep running on the same CPUs, where the CPU caches have cached their data. (These caches are described as having cache warmth, and the approach to favor CPUs is called CPU affinity.) On NUMA systems, memory locality may also be improved, which also improves performance (this is described in Chapter 7, Memory).

It also avoids the cost of thread synchronization (mutex locks) for queue operations, which would hurt scalability if the run queue was global and shared among all CPUs.

Concepts
The following are a selection of important concepts regarding CPU performance, beginning with a summary of processor internals: the CPU clock rate and how instructions are executed. This is background for later performance analysis, particularly for understanding the cycles-per-instruction (CPI) metric.

Clock Rate
The clock is a digital signal that drives all processor logic. Each CPU instruction may take one or more cycles of the clock (called CPU cycles) to execute. CPUs exe- cute at a particular clock rate; for example, a 5 GHz CPU performs 5 billion clock cycles per second.

Some processors are able to vary their clock rate, increasing it to improve performance or decreasing it to reduce power consumption. The rate may be varied on request by the operating system, or dynamically by the processor itself. The ker- nel idle thread, for example, can request the CPU to throttle down to save power.

Clock rate is often marketed as the primary feature of the processor, but this can be a little misleading. Even if the CPU in your system appears to be fully utilized (a bottleneck), a faster clock rate may not speed up performance-it depends on what those fast CPU cycles are actually doing. If they are mostly stall cycles while waiting on memory access, executing them more quickly doesn't actually increase the CPU instruction rate or workload throughput.

Instruction
CPUs execute instructions chosen from their instruction set. An instruction includes the following steps, each processed by a component of the CPU called a functional unit:

  1. Instruction fetch
  2. Instruction decode
  3. Execute
  4. Memory access
  5. Register write-back

The last two steps are optional, depending on the instruction. Many instructions operate on registers only and do not require the memory access step.

Each of these steps takes at least a single clock cycle to be executed. Memory access is often the slowest, as it may take dozens of clock cycles to read or write to main memory, during which instruction execution has stalled (and these cycles while stalled are called stall cycles). This is why CPU caching is important, as described in Section 6.4: it can dramatically reduce the number of cycles needed for memory access.

Instruction Pipeline
The instruction pipeline is a CPU architecture that can execute multiple instructions in parallel, by executing different components of different instructions at the same time. It is similar to a factory assembly line, where stages of production can be executed in parallel, increasing throughput.

Consider the instruction steps previously listed. If each were to take a single clock cycle, it would take five cycles to complete the instruction. At each step of this instruction, only one functional unit is active and four are idle. By use of pipe- lining, multiple functional units can be active at the same time, processing differ- ent instructions in the pipeline. Ideally, the processor can then complete one instruction with every clock cycle.

Instruction Width
But we can go faster still. Multiple functional units can be included of the same type, so that even more instructions can make forward progress with each clock cycle. This CPU architecture is called superscalar and is typically used with pipe- lining to achieve a high instruction throughput.

The instruction width describes the target number of instructions to process in parallel. Modern processors are 3-wide or 4-wide, meaning they can complete up to three or four instructions per cycle. How this works depends on the processor, as there may be different numbers of functional units for each stage.

CPI, IPC
Cycles per instruction (CPI) is an important high-level metric for describing where a CPU is spending its clock cycles and for understanding the nature of CPU utilization. This metric may also be expressed as instructions per cycle (IPC), the inverse of CPI.

A high CPI indicates that CPUs are often stalled, typically for memory access. A low CPI indicates that CPUs are often not stalled and have a high instruction throughput. These metrics suggest where performance tuning efforts may be best spent.

Memory-intensive workloads, for example, may be improved by installing faster memory (DRAM), improving memory locality (software configuration), or reducing the amount of memory I/O. Installing CPUs with a higher clock rate may not improve performance to the degree expected, as the CPUs may need to wait the same amount of time for memory I/O to complete. Put differently, a faster CPU may mean more stall cycles but the same rate of completed instructions.

The actual values for high or low CPI are dependent on the processor and processor features and can be determined experimentally by running known work- loads. As an example, you may find that high-CPI workloads run with a CPI at ten or higher, and low CPI workloads run with a CPI at less than one (which is possi- ble due to instruction pipelining and width, described earlier).

It should be noted that CPI shows the efficiency of instruction processing, but not of the instructions themselves. Consider a software change that added an inefficient software loop, which operates mostly on CPU registers (no stall cycles): such a change may result in a lower overall CPI, but higher CPU usage and utilization.

Utilization
CPU utilization is measured by the time a CPU instance is busy performing work during an interval, expressed as a percentage. It can be measured as the time a CPU is not running the kernel idle thread but is instead running user-level application threads or other kernel threads, or processing interrupts.

High CPU utilization may not necessarily be a problem, but rather a sign that the system is doing work. Some people also consider this an ROI indicator: a highly utilized system is considered to have good ROI, whereas an idle system is considered wasted. Unlike with other resource types (disks), performance does not degrade steeply under high utilization, as the kernel supports priorities, preemption, and time sharing. These together allow the kernel to understand what has higher priority, and to ensure that it runs first.

The measure of CPU utilization spans all clock cycles for eligible activities, including memory stall cycles. It may seem a little counterintuitive, but a CPU may be highly utilized because it is often stalled waiting for memory I/O, not just executing instructions, as described in the previous section.

CPU utilization is often split into separate kernel- and user-time metrics.

More Stories By Brendan Gregg

Brendan Gregg, Lead Performance Engineer at Joyent, analyzes performance and scalability throughout the software stack. As Performance Lead and Kernel Engineer at Sun Microsystems (and later Oracle), his work included developing the ZFS L2ARC, a pioneering file system technology for improving performance using flash memory. He has invented and developed many performance tools, including some that ship with Mac OS X and Oracle® Solaris™ 11. His recent work has included performance visualizations for Linux and illumos kernel analysis. He is coauthor of DTrace (Prentice Hall, 2011) and Solaris™ Performance and Tools (Prentice Hall, 2007).

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@DevOpsSummit Stories
Log data provides the most granular view into what is happening across your systems, applications, and end users. Logs can show you where the issues are in real-time, and provide a historical trending view over time. Logs give you the whole picture. Logentries, a log management and analytics service built for the cloud, has announced a new integration with Slack, the team communication platform, to enable real-time system and application monitoring. Users of both services can now receive real-time notifications, log-level details with timestamps, and event context inside of designated Slack ...
The 4th International DevOps Summit, co-located with16th International Cloud Expo – being held June 9-11, 2015, at the Javits Center in New York City, NY – announces that its Call for Papers is now open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's largest enterprises – and delivering real results. Among the proven benefits, DevOps is correlated with 2...
“DevOps is really about the business. The business is under pressure today, competitively in the marketplace to respond to the expectations of the customer. The business is driving IT and the problem is that IT isn't responding fast enough," explained Mark Levy, Senior Product Marketing Manager at Serena Software, in this SYS-CON.tv interview at DevOps Summit, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
“The year of the cloud – we have no idea when it's really happening but we think it's happening now. For those technology providers like Zentera that are helping enterprises move to the cloud - it's been fun to watch," noted Mike Loftus, VP Product Management and Marketing at Zentera Systems, in this SYS-CON.tv interview at Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Dale Kim is the Director of Industry Solutions at MapR. His background includes a variety of technical and management roles at information technology companies. While his experience includes work with relational databases, much of his career pertains to non-relational data in the areas of search, content management, and NoSQL, and includes senior roles in technical marketing, sales engineering, and support engineering. Dale holds an MBA from Santa Clara University, and a BA in Computer Science from the University of California, Berkeley.
Cloud Technology Partners on Wednesday announced it has been recognized by the Modern Infrastructure Impact Awards as one of the Best Amazon Web Services (AWS) Consulting Partners. Selected by the editors of TechTarget's SearchDataCenter.com, and by votes from customers and strategic channel partners, the companies acknowledged by the Modern Infrastructure Impact Awards represent the top providers of cloud consulting services for AWS including application migration, application development, infrastructure modernization, DevOps and more.
“We help people build clusters, in the classical sense of the cluster. We help people put a full stack on top of every single one of those machines. We do the full bare metal install," explained Greg Bruno, Vice President of Engineering and co-founder of StackIQ, in this SYS-CON.tv interview at 15th Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
"Blue Box has been around for 10-11 years, and last year we launched Blue Box Cloud. We like the term 'Private Cloud as a Service' because we think that embodies what we are launching as a product - it's a managed hosted private cloud," explained Giles Frith, Vice President of Customer Operations at Blue Box, in this SYS-CON.tv interview at DevOps Summit, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Media announced that Splunk, a provider of the leading software platform for real-time Operational Intelligence, has launched an ad campaign on Big Data Journal. Splunk software and cloud services enable organizations to search, monitor, analyze and visualize machine-generated big data coming from websites, applications, servers, networks, sensors and mobile devices. The ads focus on delivering ROI - how improved uptime delivered $6M in annual ROI, improving customer operations by mining large volumes of unstructured data, and how data tracking delivers uptime when it matters most.
The move in recent years to cloud computing services and architectures has added significant pace to the application development and deployment environment. When enterprise IT can spin up large computing instances in just minutes, developers can also design and deploy in small time frames that were unimaginable a few years ago. The consequent move toward lean, agile, and fast development leads to the need for the development and operations sides to work very closely together. Thus, DevOps becomes essential for any ambitious enterprise today. This Lunchtime Power Panel at DevOps Summit (http:/...
Puppet Labs on Wednesday released the DevOps Salary Report, based on salary data gathered from Puppet Labs' industry-recognized State of DevOps Report. The data confirms that market demand for DevOps skills is growing, and that DevOps engineers are among the highest paid IT practitioners today. That's because IT organizations today are grappling with how to be more agile and responsive to the business, while maintaining the stability of their infrastructure. DevOps practices, such as continuous delivery and strong cross-team collaboration, are proven to increase both agility and reliability: H...
AppDynamics, the application intelligence leader for software-defined businesses, announced the general availability of the AppDynamics Fall '14 Release. Serving the combined needs of IT and business teams across the enterprise, the latest release provides a comprehensive view across all aspects of digital performance in ultra large scale deployments. AppDynamics delivers Application Intelligence by building out advanced capabilities across the key areas of analytics, unified monitoring and DevOps. The Fall '14 Release of the AppDynamics Application Intelligence platform introduces: powe...
“We are strong believers in the DevOps movement and our staff has been doing DevOps for large enterprise environments for a number of years. The solution that we build is intended to allow DevOps teams to do security at the speed of DevOps," explained Justin Lundy, Founder & CTO of Evident.io, in this SYS-CON.tv interview at DevOps Summit, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
"ElasticBox is an enterprise company that makes it very easy for developers and IT ops to collaborate to develop, build and deploy applications on any cloud - private, public or hybrid," stated Monish Sharma, VP of Customer Success at ElasticBox, in this SYS-CON.tv interview at DevOps Summit, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The term culture has had a polarizing effect among DevOps supporters. Some propose that culture change is critical for success with DevOps, but are remiss to define culture. Some talk about a DevOps culture but then reference activities that could lead to culture change and there are those that talk about culture change as a set of behaviors that need to be adopted by those in IT. There is no question that businesses successful in adopting a DevOps mindset have seen departmental culture change, the question remains, is culture the leading edge of this change? I posit that in large enterprises,...
In a world of ever-accelerating business cycles and fast-changing client expectations, the cloud increasingly serves as a growth engine and a path to new business models. Dynamic clouds enable businesses to continuously reinvent themselves, adapting their business processes, their service and software delivery and their operations to achieve speed-to-market and quick response to customer feedback. As the cloud evolves, the industry has multiple competing cloud technologies, offering on-premises and off-premises cloud platforms for both Infrastructure as a Service (IaaS) and Platform as a Servi...
"Our premise is Docker is not enough. That's not a bad thing - we actually love Docker. At ActiveState all our products are based on open source technology and Docker is an up-and-coming piece of open source technology," explained Bart Copeland, President & CEO of ActiveState Software, in this SYS-CON.tv interview at DevOps Summit at Cloud Expo®, held Nov 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.

ARMONK, N.Y., Nov. 20, 2014 /PRNewswire/ --  IBM (NYSE: IBM) today announced that it is bringing a greater level of control, security and flexibility to cloud-based application development and delivery with a single-tenant version of Bluemix, IBM's platform-as-a-service. The new platform enables developers to build ap...

Leysin American School is an exclusive, private boarding school located in Leysin, Switzerland. Leysin selected an OpenStack-powered, private cloud as a service to manage multiple applications and provide development environments for students across the institution. Seeking to meet rigid data sovereignty and data integrity requirements while offering flexible, on-demand cloud resources to users, Leysin identified OpenStack as the clear choice to round out the school's cloud strategy. Additionally, the school sought a partner to provide OpenStack infrastructure deployment and operations expert...
DevOps is all about agility. However, you don't want to be on a high-speed bus to nowhere. The right DevOps approach controls velocity with a tight feedback loop that not only consists of operational data but also incorporates business context. With a business context in the decision making, the right business priorities are incorporated, which results in a higher value creation. In his session at DevOps Summit, Todd Rader, Solutions Architect at AppDynamics, discussed key monitoring techniques that facilitate higher value creation for your enterprise.
The move in recent years to cloud computing services and architectures has added significant pace to the application development and deployment environment. When enterprise IT can spin up large computing instances in just minutes, developers can also design and deploy in small time frames that were unimaginable a few years ago. The consequent move toward lean, agile, and fast development leads to the need for the development and operations sides to work very closely together. Thus, DevOps becomes essential for any ambitious enterprise today.
High-performing enterprise Software Quality Assurance (SQA) teams validate systems that are ready for use - getting most actively involved as components integrate and form complete systems. These teams catch and report on defects, making sure the customer gets the best software possible. SQA teams have leveraged automation and virtualization to execute more thorough testing in less time - bringing Dev and Ops together, ensuring production readiness. Does the emergence of DevOps mean the end of Enterprise SQA? Does the SQA function become redundant? In her session at DevOps Summit, Anne Hungat...
Between the compelling mockups and specs produced by your analysts and designers, and the resulting application built by your developers, there is a gulf where projects fail, costs spiral out of control, and applications fall short of requirements. In his session at DevOps Summit, Charles Kendrick, CTO and Chief Architect at Isomorphic Software, will present a new approach where business and development users collaborate – each using tools appropriate to their goals and expertise – to build mockups and enhance them all the way through functional prototypes, to final working applications. Lea...
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The cloud has transformed how we think about software quality. Instead of preventing failures, we must focus on automatic recovery from failure. In other words, resilience trumps traditional quality measures. Continuous delivery models further squeeze traditional notions of quality. Remember the venerable project management Iron Triangle? Among time, scope, and cost, you can only fix two or quality will suffer. Only in today's DevOps world, continuous testing, integration, and deployment upend the time metric, the DevOps cadence reinvents project scope, and cost metrics expand past software ...