Click here to close now.



Welcome!

@DevOpsSummit Authors: Elizabeth White, Pat Romanski, SmartBear Blog, Anders Wallgren, Tim Hinds

Related Topics: @CloudExpo, Java IoT, Microservices Expo, Containers Expo Blog, @BigDataExpo, SDN Journal

@CloudExpo: Book Excerpt

Book Excerpt: Systems Performance: Enterprise and the Cloud | Part 1

CPUs drive all software and are often the first target for systems performance analysis

"This excerpt is from the book, "Systems Performance: Enterprise and the Cloud", authored by Brendan Gregg, published by Prentice Hall Professional, Oct. 2013, ISBN 9780133390094, Copyright © 2014 Pearson Education, Inc. For more info, please visit the publisher site:

CPUs drive all software and are often the first target for systems performance analysis. Modern systems typically have many CPUs, which are shared among all running software by the kernel scheduler. When there is more demand for CPU resources than there are resources available, process threads (or tasks) will queue, waiting their turn. Waiting can add significant latency during the runtime of applications, degrading performance.

The usage of the CPUs can be examined in detail to look for performance improvements, including eliminating unnecessary work. At a high level, CPU usage by process, thread, or task can be examined. At a lower level, the code path within applications and the kernel can be profiled and studied. At the lowest level, CPU instruction execution and cycle behavior can be studied.

This chapter consists of five parts:

  • Background introduces CPU-related terminology, basic models of CPUs, and key CPU performance concepts.
  • Architecture introduces processor and kernel scheduler architecture.
  • Methodology describes performance analysis methodologies, both observa- tional and experimental.
  • Analysis describes CPU performance analysis tools on Linux- and Solaris- based systems, including profiling, tracing, and visualizations.
  • Tuning includes examples of tunable parameters.

The first three sections provide the basis for CPU analysis, and the last two show its practical application to Linux- and Solaris-based systems.

The effects of memory I/O on CPU performance are covered, including CPU cycles stalled on memory and the performance of CPU caches. Chapter 7, Memory, continues the discussion of memory I/O, including MMU, NUMA/UMA, system interconnects, and memory busses.

Terminology
For reference, CPU-related terminology used in this chapter includes the following:

  • Processor: the physical chip that plugs into a socket on the system or pro- cessor board and contains one or more CPUs implemented as cores or hard- ware threads.
  • Core: an independent CPU instance on a multicore processor. The use of cores is a way to scale processors, called chip-level multiprocessing (CMP).
  • Hardware thread: a CPU architecture that supports executing multiple threads in parallel on a single core (including Intel's Hyper-Threading Tech- nology), where each thread is an independent CPU instance. One name for this scaling approach is multithreading.
  • CPU instruction: a single CPU operation, from its instruction set. There are instructions for arithmetic operations, memory I/O, and control logic.
  • Logical CPU: also called a virtual processor,1 an operating system CPU instance (a schedulable CPU entity). This may be implemented by the processor as a hardware thread (in which case it may also be called a virtual core), a core, or a single-core processor.
  • Scheduler: the kernel subsystem that assigns threads to run on CPUs.
  • Run queue: a queue of runnable threads that are waiting to be serviced by
  • CPUs. For Solaris, it is often called a dispatcher queue.

Other terms are introduced throughout this chapter. The Glossary includes basic terminology for reference, including CPU, CPU cycle, and stack. Also see the terminology sections in Chapters 2 and 3.

Models
The following simple models illustrate some basic principles of CPUs and CPU per- formance. Section 6.4, Architecture, digs much deeper and includes implementation- specific details.

CPU Architecture
Figure 1 shows an example CPU architecture, for a single processor with four cores and eight hardware threads in total. The physical architecture is pictured, along with how it is seen by the operating system.

Figure 1: CPU architecture

Each hardware thread is addressable as a logical CPU, so this processor appears as eight CPUs. The operating system may have some additional knowledge of topology, such as which CPUs are on the same core, to improve its scheduling decisions.

CPU Memory Caches
Processors provide various hardware caches for improving memory I/O perfor- mance. Figure 2 shows the relationship of cache sizes, which become smaller and faster (a trade-off) the closer they are to the CPU.

The caches that are present, and whether they are on the processor (integrated) or external to the processor, depend on the processor type. Earlier processors pro- vided fewer levels of integrated cache.

Figure 2: CPU cache sizes

CPU Run Queues
Figure 3 shows a CPU run queue, which is managed by the kernel scheduler.

Figure 3: CPU run queue

The thread states shown in the figure, ready to run and on-CPU, are covered in Figure 3.7 in Chapter 3, Operating Systems.

The number of software threads that are queued and ready to run is an impor- tant performance metric indicating CPU saturation. In this figure (at this instant) there are four, with an additional thread running on-CPU. The time spent waiting on a CPU run queue is sometimes called run-queue latency or dispatcher-queue latency. In this book, the term scheduler latency is used instead, as it is appropri- ate for all dispatcher types, including those that do not use queues (see the discus- sion of CFS in Section 6.4.2, Software).

For multiprocessor systems, the kernel typically provides a run queue for each CPU and aims to keep threads on the same run queue. This means that threads are more likely to keep running on the same CPUs, where the CPU caches have cached their data. (These caches are described as having cache warmth, and the approach to favor CPUs is called CPU affinity.) On NUMA systems, memory locality may also be improved, which also improves performance (this is described in Chapter 7, Memory).

It also avoids the cost of thread synchronization (mutex locks) for queue operations, which would hurt scalability if the run queue was global and shared among all CPUs.

Concepts
The following are a selection of important concepts regarding CPU performance, beginning with a summary of processor internals: the CPU clock rate and how instructions are executed. This is background for later performance analysis, particularly for understanding the cycles-per-instruction (CPI) metric.

Clock Rate
The clock is a digital signal that drives all processor logic. Each CPU instruction may take one or more cycles of the clock (called CPU cycles) to execute. CPUs exe- cute at a particular clock rate; for example, a 5 GHz CPU performs 5 billion clock cycles per second.

Some processors are able to vary their clock rate, increasing it to improve performance or decreasing it to reduce power consumption. The rate may be varied on request by the operating system, or dynamically by the processor itself. The ker- nel idle thread, for example, can request the CPU to throttle down to save power.

Clock rate is often marketed as the primary feature of the processor, but this can be a little misleading. Even if the CPU in your system appears to be fully utilized (a bottleneck), a faster clock rate may not speed up performance-it depends on what those fast CPU cycles are actually doing. If they are mostly stall cycles while waiting on memory access, executing them more quickly doesn't actually increase the CPU instruction rate or workload throughput.

Instruction
CPUs execute instructions chosen from their instruction set. An instruction includes the following steps, each processed by a component of the CPU called a functional unit:

  1. Instruction fetch
  2. Instruction decode
  3. Execute
  4. Memory access
  5. Register write-back

The last two steps are optional, depending on the instruction. Many instructions operate on registers only and do not require the memory access step.

Each of these steps takes at least a single clock cycle to be executed. Memory access is often the slowest, as it may take dozens of clock cycles to read or write to main memory, during which instruction execution has stalled (and these cycles while stalled are called stall cycles). This is why CPU caching is important, as described in Section 6.4: it can dramatically reduce the number of cycles needed for memory access.

Instruction Pipeline
The instruction pipeline is a CPU architecture that can execute multiple instructions in parallel, by executing different components of different instructions at the same time. It is similar to a factory assembly line, where stages of production can be executed in parallel, increasing throughput.

Consider the instruction steps previously listed. If each were to take a single clock cycle, it would take five cycles to complete the instruction. At each step of this instruction, only one functional unit is active and four are idle. By use of pipe- lining, multiple functional units can be active at the same time, processing differ- ent instructions in the pipeline. Ideally, the processor can then complete one instruction with every clock cycle.

Instruction Width
But we can go faster still. Multiple functional units can be included of the same type, so that even more instructions can make forward progress with each clock cycle. This CPU architecture is called superscalar and is typically used with pipe- lining to achieve a high instruction throughput.

The instruction width describes the target number of instructions to process in parallel. Modern processors are 3-wide or 4-wide, meaning they can complete up to three or four instructions per cycle. How this works depends on the processor, as there may be different numbers of functional units for each stage.

CPI, IPC
Cycles per instruction (CPI) is an important high-level metric for describing where a CPU is spending its clock cycles and for understanding the nature of CPU utilization. This metric may also be expressed as instructions per cycle (IPC), the inverse of CPI.

A high CPI indicates that CPUs are often stalled, typically for memory access. A low CPI indicates that CPUs are often not stalled and have a high instruction throughput. These metrics suggest where performance tuning efforts may be best spent.

Memory-intensive workloads, for example, may be improved by installing faster memory (DRAM), improving memory locality (software configuration), or reducing the amount of memory I/O. Installing CPUs with a higher clock rate may not improve performance to the degree expected, as the CPUs may need to wait the same amount of time for memory I/O to complete. Put differently, a faster CPU may mean more stall cycles but the same rate of completed instructions.

The actual values for high or low CPI are dependent on the processor and processor features and can be determined experimentally by running known work- loads. As an example, you may find that high-CPI workloads run with a CPI at ten or higher, and low CPI workloads run with a CPI at less than one (which is possi- ble due to instruction pipelining and width, described earlier).

It should be noted that CPI shows the efficiency of instruction processing, but not of the instructions themselves. Consider a software change that added an inefficient software loop, which operates mostly on CPU registers (no stall cycles): such a change may result in a lower overall CPI, but higher CPU usage and utilization.

Utilization
CPU utilization is measured by the time a CPU instance is busy performing work during an interval, expressed as a percentage. It can be measured as the time a CPU is not running the kernel idle thread but is instead running user-level application threads or other kernel threads, or processing interrupts.

High CPU utilization may not necessarily be a problem, but rather a sign that the system is doing work. Some people also consider this an ROI indicator: a highly utilized system is considered to have good ROI, whereas an idle system is considered wasted. Unlike with other resource types (disks), performance does not degrade steeply under high utilization, as the kernel supports priorities, preemption, and time sharing. These together allow the kernel to understand what has higher priority, and to ensure that it runs first.

The measure of CPU utilization spans all clock cycles for eligible activities, including memory stall cycles. It may seem a little counterintuitive, but a CPU may be highly utilized because it is often stalled waiting for memory I/O, not just executing instructions, as described in the previous section.

CPU utilization is often split into separate kernel- and user-time metrics.

More Stories By Brendan Gregg

Brendan Gregg, Lead Performance Engineer at Joyent, analyzes performance and scalability throughout the software stack. As Performance Lead and Kernel Engineer at Sun Microsystems (and later Oracle), his work included developing the ZFS L2ARC, a pioneering file system technology for improving performance using flash memory. He has invented and developed many performance tools, including some that ship with Mac OS X and Oracle® Solaris™ 11. His recent work has included performance visualizations for Linux and illumos kernel analysis. He is coauthor of DTrace (Prentice Hall, 2011) and Solaris™ Performance and Tools (Prentice Hall, 2007).

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@DevOpsSummit Stories
SYS-CON Events announced today that VAI, a leading ERP software provider, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. VAI (Vormittag Associates, Inc.) is a leading independent mid-market ERP software developer renowned for its flexible solutions and ability to automate critical business functions for the distribution, manufacturing, specialty retail and service sectors. An IBM Premier Business Partner, VAI is the 2012 IBM Beacon Award Winner for Outstanding Solutions for Midsize Businesses.
SYS-CON Events announced today that Catchpoint Systems, Inc., a provider of innovative web and infrastructure monitoring solutions, has been named “Silver Sponsor” of SYS-CON's DevOps Summit at 18th Cloud Expo New York, which will take place June 7-9, 2016, at the Javits Center in New York City, NY. Catchpoint is a leading Digital Performance Analytics company that provides unparalleled insight into customer-critical services to help consistently deliver an amazing customer experience. Designed for digital business, Catchpoint is the only end-user experience monitoring (EUM) platform that can...
One of the bewildering things about DevOps is integrating the massive toolchain including the dozens of new tools that seem to crop up every year. Part of DevOps is Continuous Delivery and having a complex toolchain can add additional integration and setup to your developer environment. In his session at @DevOpsSummit at 18th Cloud Expo, Miko Matsumura, Chief Marketing Officer of Gradle Inc., will discuss which tools to use in a developer stack, how to provision the toolchain to minimize onboarding time for new developers, and how to maximize productivity according to some of the leading com...
The principles behind DevOps are not new - for decades people have been automating system administration and decreasing the time to deploy apps and perform other management tasks. However, only recently did we see the tools and the will necessary to share the benefits and power of automation with a wider circle of people. In his session at DevOps Summit, Bernard Sanders, Chief Technology Officer at CloudBolt Software, explored the latest tools including Puppet, Chef, Docker, and CMPs needed to move from an insulated culture where automation is absent or hoarded to one where the power of DevO...
SYS-CON Events announced today that AppNeta, the leader in performance insight for business-critical web applications, will exhibit and present at SYS-CON's @DevOpsSummit at Cloud Expo New York, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. AppNeta is the only application performance monitoring (APM) company to provide solutions for all applications – applications you develop internally, business-critical SaaS applications you use and the networks that deliver them.
Advances in technology and ubiquitous connectivity have made the utilization of a dispersed workforce more common. Whether that remote team is located across the street or country, management styles/ approaches will have to be adjusted to accommodate this new dynamic. In his session at 17th Cloud Expo, Sagi Brody, Chief Technology Officer at Webair Internet Development Inc., focused on the challenges of managing remote teams, providing real-world examples that demonstrate what works and what doesn’t. He covered proper training and integration of these teams into the corporate structure, and t...
Father business cycles and digital consumers are forcing enterprises to respond faster to customer needs and competitive demands. Successful integration of DevOps and Agile development will be key for business success in today’s digital economy. In his session at DevOps Summit, Pradeep Prabhu, Co-Founder & CEO of Cloudmunch, covered the critical practices that enterprises should consider to seamlessly integrate Agile and DevOps processes, barriers to implementing this in the enterprise, and provided examples on how an integrated approach has helped major companies embrace a cloud first, DevO...
In most cases, it is convenient to have some human interaction with a web (micro-)service, no matter how small it is. A traditional approach would be to create an HTTP interface, where user requests will be dispatched and HTML/CSS pages must be served. This approach is indeed very traditional for a web site, but not really convenient for a web service, which is not intended to be good looking, 24x7 up and running and UX-optimized. Instead, talking to a web service in a chat-bot mode would be much more convenient, both for a user and web service developer.
More and more companies are looking to microservices as an architectural pattern for breaking apart applications into more manageable pieces so that agile teams can deliver new features quicker and more effectively. What this pattern has done more than anything to date is spark organizational transformations, setting the foundation for future application development. In practice, however, there are a number of considerations to make that go beyond simply “build, ship, and run,” which changes how developers and operators work together to streamline cohesive systems.
SYS-CON Events announced today that Interoute, owner-operator of one of Europe's largest networks and a global cloud services platform, has been named “Bronze Sponsor” of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2015 at the Javits Center in New York, New York. Interoute is the owner-operator of one of Europe's largest networks and a global cloud services platform which encompasses 12 data centers, 14 virtual data centers and 31 colocation centers, with connections to 195 additional third-party data centers across Europe. Its full-service Unified ICT platform serves intern...
SYS-CON Events announced today that Fusion, a leading provider of cloud services, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Fusion, a leading provider of integrated cloud solutions to small, medium and large businesses, is the industry's single source for the cloud. Fusion's advanced, proprietary cloud service platform enables the integration of leading edge solutions in the cloud, including cloud communications, cloud connectivity, and cloud computing. Fusion's innovative, yet proven cloud sol...
SYS-CON Events announced today that Commvault, a global leader in enterprise data protection and information management, has been named “Bronze Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY, and the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Commvault is a leading provider of data protection and information management solutions, helping companies worldwide activate their data to drive more value and business insight...
SYS-CON Events announced today that Alert Logic, Inc., the leading provider of Security-as-a-Service solutions for the cloud, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Alert Logic, Inc., provides Security-as-a-Service for on-premises, cloud, and hybrid infrastructures, delivering deep security insight and continuous protection for customers at a lower cost than traditional security solutions. Fully managed by a team of experts, the Alert Logic Security-as-a-Service solution provides network, sy...
@DevOpsSummit taking place June 7-9, 2016 at Javits Center, New York City, and Nov 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with the 18th International @CloudExpo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. @DevOpsSummit at Cloud Expo New York Call for Papers is now open.
Your business relies on your applications and your employees to stay in business. Whether you develop apps or manage business critical apps that help fuel your business, what happens when users experience sluggish performance? You and all technical teams across the organization – application, network, operations, among others, as well as, those outside the organization, like ISPs and third-party providers – are called in to solve the problem.
As someone who has been dedicated to automation and Application Release Automation (ARA) technology for almost six years now, one of the most common questions I get asked regards Platform-as-a-Service (PaaS). Specifically, people want to know whether release automation is still needed when a PaaS is in place, and why. Isn't that what a PaaS provides? A solution to the deployment and runtime challenges of an application? Why would anyone using a PaaS then need an automation engine with workflow and orchestration capabilities to run their release and operations in a PaaS environment?
OpsClarity has announced that its Intelligent Monitoring solution now provides monitoring for the growing and popular suite of open source data processing frameworks. OpsClarity understands the extremely complex and distributed runtime characteristics of modern data processing frameworks like Apache Kafka, Apache Storm, Apache Spark as well as datastores such as Elasticsearch, Cassandra, MongoDB and others that act as sinks to these data processing frameworks. The solution enables DevOps teams to gain visibility into how these technologies are dependent on each other and troubleshoot performan...
DevOps has often been described in terms of CAMS: Culture, Automation, Measuring, Sharing. While we’ve seen a lot of focus on the “A” and even on the “M”, there are very few examples of why the “C" is equally important in the DevOps equation. In her session at @DevOps Summit, Lori MacVittie, of F5 Networks, explored HTTP/1 and HTTP/2 along with Microservices to illustrate why a collaborative culture between Dev, Ops, and the Network is critical to ensuring success.
The modern software development landscape consists of best practices and tools that allow teams to deliver software in a near-continuous manner. By adopting a culture of automation, measurement and sharing, the time to ship code has been greatly reduced, allowing for shorter release cycles and quicker feedback from customers and users. Still, with all of these tools and methods, how can teams stay on top of what is taking place across their infrastructure and codebase? Hopping between services and command line interfaces creates context-switching that slows productivity, efficiency, and may le...
Actifio has announced its partnership with Camouflage Software Inc., a leading provider of solutions for data masking in Test Data Management. The partnership brings a best-in-class solution to address the challenges of data access, control, security, and storage costs in the test and development space. "Software is eating the world," as Marc Andreessen famously said in 2011. Since then, more and more industries have been transformed by software, to the point where the largest distributor of films has no theaters (Netflix,) the largest provider of delivery services has no cars (Uber,) the lar...
Rapid innovation, changing business landscapes, and new IT demands force businesses to make changes quickly. The DevOps approach is a way to increase business agility through collaboration, communication, and integration across different teams in the IT organization. In his session at @DevOpsSummit, Chris Van Tuin, Chief Technologist for the Western US at Red Hat, discussed: The acceleration of application delivery for the business with DevOps
In his session at @DevOpsSummit at 18th Cloud Expo, Robert Doyle, Chief Technology Architect at eCube Systems, will examine the issues and need for an agile infrastructure and show the advantages of capturing developer knowledge in an exportable file for migration into production. He will introduce the use of NXTmonitor, a next generation DevOps tool that captures application environments, dependencies and start/stop procedures in a portable configuration file with an easy-to-use GUI. In addition to capturing configuration information between Development, Test and Production, the case study ...
SYS-CON Events announced today that AppNeta, the leader in performance insight for business-critical web applications, will exhibit and present at SYS-CON's @DevOpsSummit at Cloud Expo New York, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. AppNeta is the only application performance monitoring (APM) company to provide solutions for all applications – applications you develop internally, business-critical SaaS applications you use and the networks that deliver them.
For it to be SOA – let alone SOA done right – we need to pin down just what "SOA done wrong" might be. First-generation SOA with Web Services and ESBs, perhaps? But then there's second-generation, REST-based SOA. More lightweight and cloud-friendly, but many REST-based SOA practices predate the microservices wave. Today, microservices and containers go hand in hand – only the details of "container-oriented architecture" are largely on the drawing board – and are not likely to look much like SOA in any case. In his session at 17th Cloud Expo, Jason Bloomberg, President of Intellyx, provided...
The Microservices architectural pattern promises increased DevOps agility and can help enable continuous delivery of software. This session is for developers who are transforming existing applications to cloud-native applications, or creating new microservices style applications. In his session at 17th Cloud Expo, Jim Bugwadia, CEO of Nirmata, introduced best practices, patterns, challenges, and solutions for the development and operations of microservices style applications. He discussed how application container solutions can be used to efficiently deploy and operate these applications in a...