Click here to close now.

Welcome!

@DevOpsSummit Authors: Baruch Sadogursky, JP Morgenthal, AppDynamics Blog, Elizabeth White, Plutora Blog

Related Topics: Cloud Expo, Java, Microservices Journal, Virtualization, Big Data Journal, SDN Journal

Cloud Expo: Book Excerpt

Book Excerpt: Systems Performance: Enterprise and the Cloud | Part 1

CPUs drive all software and are often the first target for systems performance analysis

"This excerpt is from the book, "Systems Performance: Enterprise and the Cloud", authored by Brendan Gregg, published by Prentice Hall Professional, Oct. 2013, ISBN 9780133390094, Copyright © 2014 Pearson Education, Inc. For more info, please visit the publisher site:

CPUs drive all software and are often the first target for systems performance analysis. Modern systems typically have many CPUs, which are shared among all running software by the kernel scheduler. When there is more demand for CPU resources than there are resources available, process threads (or tasks) will queue, waiting their turn. Waiting can add significant latency during the runtime of applications, degrading performance.

The usage of the CPUs can be examined in detail to look for performance improvements, including eliminating unnecessary work. At a high level, CPU usage by process, thread, or task can be examined. At a lower level, the code path within applications and the kernel can be profiled and studied. At the lowest level, CPU instruction execution and cycle behavior can be studied.

This chapter consists of five parts:

  • Background introduces CPU-related terminology, basic models of CPUs, and key CPU performance concepts.
  • Architecture introduces processor and kernel scheduler architecture.
  • Methodology describes performance analysis methodologies, both observa- tional and experimental.
  • Analysis describes CPU performance analysis tools on Linux- and Solaris- based systems, including profiling, tracing, and visualizations.
  • Tuning includes examples of tunable parameters.

The first three sections provide the basis for CPU analysis, and the last two show its practical application to Linux- and Solaris-based systems.

The effects of memory I/O on CPU performance are covered, including CPU cycles stalled on memory and the performance of CPU caches. Chapter 7, Memory, continues the discussion of memory I/O, including MMU, NUMA/UMA, system interconnects, and memory busses.

Terminology
For reference, CPU-related terminology used in this chapter includes the following:

  • Processor: the physical chip that plugs into a socket on the system or pro- cessor board and contains one or more CPUs implemented as cores or hard- ware threads.
  • Core: an independent CPU instance on a multicore processor. The use of cores is a way to scale processors, called chip-level multiprocessing (CMP).
  • Hardware thread: a CPU architecture that supports executing multiple threads in parallel on a single core (including Intel's Hyper-Threading Tech- nology), where each thread is an independent CPU instance. One name for this scaling approach is multithreading.
  • CPU instruction: a single CPU operation, from its instruction set. There are instructions for arithmetic operations, memory I/O, and control logic.
  • Logical CPU: also called a virtual processor,1 an operating system CPU instance (a schedulable CPU entity). This may be implemented by the processor as a hardware thread (in which case it may also be called a virtual core), a core, or a single-core processor.
  • Scheduler: the kernel subsystem that assigns threads to run on CPUs.
  • Run queue: a queue of runnable threads that are waiting to be serviced by
  • CPUs. For Solaris, it is often called a dispatcher queue.

Other terms are introduced throughout this chapter. The Glossary includes basic terminology for reference, including CPU, CPU cycle, and stack. Also see the terminology sections in Chapters 2 and 3.

Models
The following simple models illustrate some basic principles of CPUs and CPU per- formance. Section 6.4, Architecture, digs much deeper and includes implementation- specific details.

CPU Architecture
Figure 1 shows an example CPU architecture, for a single processor with four cores and eight hardware threads in total. The physical architecture is pictured, along with how it is seen by the operating system.

Figure 1: CPU architecture

Each hardware thread is addressable as a logical CPU, so this processor appears as eight CPUs. The operating system may have some additional knowledge of topology, such as which CPUs are on the same core, to improve its scheduling decisions.

CPU Memory Caches
Processors provide various hardware caches for improving memory I/O perfor- mance. Figure 2 shows the relationship of cache sizes, which become smaller and faster (a trade-off) the closer they are to the CPU.

The caches that are present, and whether they are on the processor (integrated) or external to the processor, depend on the processor type. Earlier processors pro- vided fewer levels of integrated cache.

Figure 2: CPU cache sizes

CPU Run Queues
Figure 3 shows a CPU run queue, which is managed by the kernel scheduler.

Figure 3: CPU run queue

The thread states shown in the figure, ready to run and on-CPU, are covered in Figure 3.7 in Chapter 3, Operating Systems.

The number of software threads that are queued and ready to run is an impor- tant performance metric indicating CPU saturation. In this figure (at this instant) there are four, with an additional thread running on-CPU. The time spent waiting on a CPU run queue is sometimes called run-queue latency or dispatcher-queue latency. In this book, the term scheduler latency is used instead, as it is appropri- ate for all dispatcher types, including those that do not use queues (see the discus- sion of CFS in Section 6.4.2, Software).

For multiprocessor systems, the kernel typically provides a run queue for each CPU and aims to keep threads on the same run queue. This means that threads are more likely to keep running on the same CPUs, where the CPU caches have cached their data. (These caches are described as having cache warmth, and the approach to favor CPUs is called CPU affinity.) On NUMA systems, memory locality may also be improved, which also improves performance (this is described in Chapter 7, Memory).

It also avoids the cost of thread synchronization (mutex locks) for queue operations, which would hurt scalability if the run queue was global and shared among all CPUs.

Concepts
The following are a selection of important concepts regarding CPU performance, beginning with a summary of processor internals: the CPU clock rate and how instructions are executed. This is background for later performance analysis, particularly for understanding the cycles-per-instruction (CPI) metric.

Clock Rate
The clock is a digital signal that drives all processor logic. Each CPU instruction may take one or more cycles of the clock (called CPU cycles) to execute. CPUs exe- cute at a particular clock rate; for example, a 5 GHz CPU performs 5 billion clock cycles per second.

Some processors are able to vary their clock rate, increasing it to improve performance or decreasing it to reduce power consumption. The rate may be varied on request by the operating system, or dynamically by the processor itself. The ker- nel idle thread, for example, can request the CPU to throttle down to save power.

Clock rate is often marketed as the primary feature of the processor, but this can be a little misleading. Even if the CPU in your system appears to be fully utilized (a bottleneck), a faster clock rate may not speed up performance-it depends on what those fast CPU cycles are actually doing. If they are mostly stall cycles while waiting on memory access, executing them more quickly doesn't actually increase the CPU instruction rate or workload throughput.

Instruction
CPUs execute instructions chosen from their instruction set. An instruction includes the following steps, each processed by a component of the CPU called a functional unit:

  1. Instruction fetch
  2. Instruction decode
  3. Execute
  4. Memory access
  5. Register write-back

The last two steps are optional, depending on the instruction. Many instructions operate on registers only and do not require the memory access step.

Each of these steps takes at least a single clock cycle to be executed. Memory access is often the slowest, as it may take dozens of clock cycles to read or write to main memory, during which instruction execution has stalled (and these cycles while stalled are called stall cycles). This is why CPU caching is important, as described in Section 6.4: it can dramatically reduce the number of cycles needed for memory access.

Instruction Pipeline
The instruction pipeline is a CPU architecture that can execute multiple instructions in parallel, by executing different components of different instructions at the same time. It is similar to a factory assembly line, where stages of production can be executed in parallel, increasing throughput.

Consider the instruction steps previously listed. If each were to take a single clock cycle, it would take five cycles to complete the instruction. At each step of this instruction, only one functional unit is active and four are idle. By use of pipe- lining, multiple functional units can be active at the same time, processing differ- ent instructions in the pipeline. Ideally, the processor can then complete one instruction with every clock cycle.

Instruction Width
But we can go faster still. Multiple functional units can be included of the same type, so that even more instructions can make forward progress with each clock cycle. This CPU architecture is called superscalar and is typically used with pipe- lining to achieve a high instruction throughput.

The instruction width describes the target number of instructions to process in parallel. Modern processors are 3-wide or 4-wide, meaning they can complete up to three or four instructions per cycle. How this works depends on the processor, as there may be different numbers of functional units for each stage.

CPI, IPC
Cycles per instruction (CPI) is an important high-level metric for describing where a CPU is spending its clock cycles and for understanding the nature of CPU utilization. This metric may also be expressed as instructions per cycle (IPC), the inverse of CPI.

A high CPI indicates that CPUs are often stalled, typically for memory access. A low CPI indicates that CPUs are often not stalled and have a high instruction throughput. These metrics suggest where performance tuning efforts may be best spent.

Memory-intensive workloads, for example, may be improved by installing faster memory (DRAM), improving memory locality (software configuration), or reducing the amount of memory I/O. Installing CPUs with a higher clock rate may not improve performance to the degree expected, as the CPUs may need to wait the same amount of time for memory I/O to complete. Put differently, a faster CPU may mean more stall cycles but the same rate of completed instructions.

The actual values for high or low CPI are dependent on the processor and processor features and can be determined experimentally by running known work- loads. As an example, you may find that high-CPI workloads run with a CPI at ten or higher, and low CPI workloads run with a CPI at less than one (which is possi- ble due to instruction pipelining and width, described earlier).

It should be noted that CPI shows the efficiency of instruction processing, but not of the instructions themselves. Consider a software change that added an inefficient software loop, which operates mostly on CPU registers (no stall cycles): such a change may result in a lower overall CPI, but higher CPU usage and utilization.

Utilization
CPU utilization is measured by the time a CPU instance is busy performing work during an interval, expressed as a percentage. It can be measured as the time a CPU is not running the kernel idle thread but is instead running user-level application threads or other kernel threads, or processing interrupts.

High CPU utilization may not necessarily be a problem, but rather a sign that the system is doing work. Some people also consider this an ROI indicator: a highly utilized system is considered to have good ROI, whereas an idle system is considered wasted. Unlike with other resource types (disks), performance does not degrade steeply under high utilization, as the kernel supports priorities, preemption, and time sharing. These together allow the kernel to understand what has higher priority, and to ensure that it runs first.

The measure of CPU utilization spans all clock cycles for eligible activities, including memory stall cycles. It may seem a little counterintuitive, but a CPU may be highly utilized because it is often stalled waiting for memory I/O, not just executing instructions, as described in the previous section.

CPU utilization is often split into separate kernel- and user-time metrics.

More Stories By Brendan Gregg

Brendan Gregg, Lead Performance Engineer at Joyent, analyzes performance and scalability throughout the software stack. As Performance Lead and Kernel Engineer at Sun Microsystems (and later Oracle), his work included developing the ZFS L2ARC, a pioneering file system technology for improving performance using flash memory. He has invented and developed many performance tools, including some that ship with Mac OS X and Oracle® Solaris™ 11. His recent work has included performance visualizations for Linux and illumos kernel analysis. He is coauthor of DTrace (Prentice Hall, 2011) and Solaris™ Performance and Tools (Prentice Hall, 2007).

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@DevOpsSummit Stories
In a recent research, analyst firm IDC found that the average cost of a critical application failure is $500,000 to $1 million per hour and the average total cost of unplanned application downtime is $1.25 billion to $2.5 billion per year for Fortune 1000 companies. In addition to the findings on the cost of the downtime, the research also highlighted best practices for development, testing, application support, infrastructure, and operations teams.
Container frameworks, such as Docker, provide a variety of benefits, including density of deployment across infrastructure, convenience for application developers to push updates with low operational hand-holding, and a fairly well-defined deployment workflow that can be orchestrated. Container frameworks also enable a DevOps approach to application development by cleanly separating concerns between operations and development teams. But running multi-container, multi-server apps with containers is very hard. You have to learn five new and different technologies and best practices (libswarm, sy...
SYS-CON Events announced today that DragonGlass, an enterprise search platform, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. After eleven years of designing and building custom applications, OpenCrowd has launched DragonGlass, a cloud-based platform that enables the development of search-based applications. These are a new breed of applications that utilize a search index as their backbone for data retrieval. They can easily adapt to new data sets and provide access to both structured and unstruc...
SYS-CON Events announced today that EnterpriseDB (EDB), the leading worldwide provider of enterprise-class Postgres products and database compatibility solutions, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. EDB is the largest provider of Postgres software and services that provides enterprise-class performance and scalability and the open source freedom to divert budget from more costly traditional solutions to more strategic data-driven initiatives. EDB’s Postgres Plus Cloud Database provides t...
Cloud computing started a technology revolution; now DevOps is driving that revolution forward. By enabling new approaches to service delivery, cloud and DevOps together are delivering even greater speed, agility, and efficiency. No wonder leading innovators are adopting DevOps and cloud together! In his session at DevOps Summit, Andi Mann, Vice President of Strategic Solutions at CA Technologies, explored the synergies in these two approaches, with practical tips, techniques, research data, war stories, case studies, and recommendations on how to: Embrace, source, consume, and expose shared...
Enterprises are fast realizing the importance of integrating SaaS/Cloud applications, API and on-premises data and processes, to unleash hidden value. This webinar explores how managers can use a Microservice-centric approach to aggressively tackle the unexpected new integration challenges posed by proliferation of cloud, mobile, social and big data projects. Industry analyst and SOA expert Jason Bloomberg will strip away the hype from microservices, and clearly identify their advantages and disadvantages. He will then discuss the role microservices play in cloud-enabled enterprise integrati...
SYS-CON Events announced today that the "First Containers & Microservices Conference" will take place June 9-11, 2015, at the Javits Center in New York City. The “Second Containers & Microservices Conference” will take place November 3-5, 2015, at Santa Clara Convention Center, Santa Clara, CA. Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities.
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? In this Power Panel at DevOps Summit, moderated by Jason Bloomberg, the leading expert on architecting agility for the enterprise and president of Intellyx, panelists will peel away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud environment, and we must architect and code accordingly. At the very least, you'll have no problem fil...
“We are strong believers in the DevOps movement and our staff has been doing DevOps for large enterprise environments for a number of years. The solution that we build is intended to allow DevOps teams to do security at the speed of DevOps," explained Justin Lundy, Founder & CTO of Evident.io, in this SYS-CON.tv interview at DevOps Summit, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Announced separately, New Relic is joining the Cloud Foundry Foundation to continue the support of customers and partners investing in this leading PaaS. As a member, New Relic is contributing the New Relic tile, service broker and build pack with the goal of easing the development of applications on Cloud Foundry and enabling the success of these applications without dedicated monitoring infrastructure. Supporting Quotes "The proliferation of microservices and new technologies like Docker has transformed how modern software is built and managed today," said Patrick Lightbody, vice presiden...
You often hear the two titles of "DevOps" and "Immutable Infrastructure" used independently. In his session at DevOps Summit, John Willis, Technical Evangelist for Docker, will cover the union between the two topics and why this is important. He will cover an overview of Immutable Infrastructure then show how an Immutable Continuous Delivery pipeline can be applied as a best practice for "DevOps." He will end the session with some interesting case study examples.
SYS-CON Media named Andi Mann editor of DevOps Journal. DevOps Journal is focused on this critical enterprise IT topic in the world of cloud computing. DevOps Journal brings valuable information to DevOps professionals who are transforming the way enterprise IT is done. Andi Mann, Vice President, Strategic Solutions, at CA Technologies, is an accomplished digital business executive with extensive global expertise as a strategist, technologist, innovator, marketer, communicator, and thought leader. For over 25 years and across five continents, he has built success with Fortune 500 corporation...
Docker is becoming very popular--we are seeing every major private and public cloud vendor racing to adopt it. It promises portability and interoperability, and is quickly becoming the currency of the Cloud. In his session at DevOps Summit, Bart Copeland, CEO of ActiveState, discussed why Docker is so important to the future of the cloud, but will also take a step back and show that Docker is actually only one piece of the puzzle. Copeland will outline the bigger picture of where Docker fits and the remaining infrastructure that is needed for large scale adoption by enterprise IT.
The 5th International DevOps Summit, co-located with 17th International Cloud Expo – being held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA – announces that its Call for Papers is open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's largest enterprises – and delivering real results. Among the proven benefits, DevOps is cor...
The 17th International Cloud Expo has announced that its Call for Papers is open. 17th International Cloud Expo, to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, APM, APIs, Microservices, Security, Big Data, Internet of Things, DevOps and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportunity. Submit your speaking proposal today!
T-Mobile has been transforming the wireless industry with its “Uncarrier” initiatives. Today as T-Mobile’s IT organization works to transform itself in a like manner, technical foundations built over the last couple of years are now key to their drive for more Agile delivery practices. In his session at DevOps Summit, Martin Krienke, Sr Development Manager at T-Mobile, will discuss where they started their Continuous Delivery journey, where they are today, and where they are going in an effort to constantly bring new offerings to market.
Security can create serious friction for DevOps processes. We've come up with an approach to alleviate the friction and provide security value to DevOps teams. In her session at DevOps Summit, Shannon Lietz, Senior Manager of DevSecOps at Intuit, will discuss how DevSecOps got started and how it has evolved. Shannon Lietz has over two decades of experience pursuing next generation security solutions. She is currently the DevSecOps Leader for Intuit where she is responsible for setting and driving the company’s cloud security strategy, roadmap and implementation in support of corporate innova...
DevOps Summit, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 17th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essen...
“Oh, dev is dev and ops is ops, and never the twain shall meet.” With apoloies to Rudyard Kipling and all of his fans, this describes the early state of the two sides of DevOps. Yet the DevOps approach is demanded by cloud computing, as the speed, flexibility, and scalability in today's so-called “Third Platform” must not be hindered by the traditional limitations of software development and deployment. A recent report by Gartner, for example, says that 25% of Global 2000 companies will be DevOps shops by next year! “As we see more IT shops running like software companies, we’ll see mor...
Software-driven innovation is becoming a primary approach to how businesses create and deliver new value to customers. A survey of 400 business and IT executives by the IBM Institute for Business Value showed businesses that are more effective at software delivery are also more profitable than their peers nearly 70 percent of the time (1). DevOps provides a way for businesses to remain competitive, applying lean and agile principles to software development to speed the delivery of software that meets new market requirements. IBM's new DevOps Innovation Services help address the challenge of s...
JFrog on Thursday announced that it has added Docker support to Bintray, its distribution-as-a-service (DaaS) platform. When combined with JFrog’s Artifactory binary repository management system, organizations can now manage Docker images with an end-to-end solution that supports all technologies. The new version of Bintray allows organizations to create an unlimited number of private Docker repositories, and through the use of fast Akamai content delivery networks (CDNs), it decreases the download time of large Docker repositories, speeding DevOps work significantly. Bintray’s highly availa...
More organizations are embracing DevOps to realize compelling business benefits such as more frequent feature releases, increased application stability, and more productive resource utilization. However, security and compliance monitoring tools have not kept up and often represent the single largest remaining hurdle to continuous delivery. In their session at DevOps Summit, Justin Criswell, Senior Sales Engineer at Alert Logic, Ricardo Lupo, a Solution Architect with Chef, will discuss how to successfully integrate security controls in your DevOps program.
Thanks to Docker, it becomes very easy to leverage containers to build, ship, and run any Linux application on any kind of infrastructure. Docker is particularly helpful for microservice architectures because their successful implementation relies on a fast, efficient deployment mechanism – which is precisely one of the features of Docker. Microservice architectures are therefore becoming more popular, and are increasingly seen as an interesting option even for smaller projects, instead of being reserved to the largest, most complex application stacks.
17th Cloud Expo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Meanwhile, 94% of enterprises are using some form of XaaS – software, platform, and infrastructure as a service.
The speed of product development has increased massively in the past 10 years. At the same time our formal secure development and SDL methodologies have fallen behind. This forces product developers to choose between rapid release times and security. In his session at DevOps Summit, Michael Murray, Director of Cyber Security Consulting and Assessment at GE Healthcare, examined the problems and presented some solutions for moving security into the DevOps lifecycle to ensure that we get fast AND secure.