Welcome!

@DevOpsSummit Authors: Liz McMillan, Jignesh Solanki, Pat Romanski, Yeshim Deniz, Scott Davis

Related Topics: @DevOpsSummit, IBM Cloud, Apache

@DevOpsSummit: Blog Feed Post

IBM’s Big Commitment to Apache Spark | @CloudExpo #DevOps #Microservices

It will offer Apache Spark as a service on Bluemix

Last June IBM made a serious commitment to the future of Apache Spark with a series of initiatives:

  • It will offer Apache Spark as a service on Bluemix (Bluemix is an implementation of IBM's Open Cloud Architecture based on Cloud Foundry, an open source Platform as a Service (PaaS). Bluemix delivers enterprise-level services that can easily integrate with your cloud applications without you needing to know how to install or configure them.
  • It committed to include 3500 researchers to work on Spark-related projects.
  • It will donate IBM SystemML (its machine learning language and libraries) to Apache Spark open source

The question is why this move by IBM?

First let us look at what is Apache Spark? Developed at UC Berkeley's AMPLab, Spark gives us a comprehensive, unified framework to manage big data processing requirements with a variety of data sets that are diverse in nature (text data, graph data etc) as well as the source of data (batch v. real-time streaming data). Spark enables applications in Hadoop clusters to run up to 100 times faster in memory and 10 times faster even when running on disk. In addition to Map and Reduce operations, it supports SQL queries, streaming data, machine learning and graph data processing. Developers can use these capabilities stand-alone or combine them to run in a single data pipeline use case. In other words, Spark is the next-generation of Hadoop (came with its batch pedigree and high latency).

With other solutions for real-time analytics via in-memory processing such as RethinkDB, an ambitious Redis project or commercial in-memory SAP Hana, IBM needed a competitive offering. Other vendors betting on Spark range from Amazon to Zoomdata. IBM will run its own analytics software on top of Spark, including SystemML for machine learning, SPSS, and IBM Streams.

At this week's Strata conference, several companies like Uber described how they have deployed Spark all the way for speedy real-time analytics. 

More Stories By Jnan Dash

Jnan Dash is Senior Advisor at EZShield Inc., Advisor at ScaleDB and Board Member at Compassites Software Solutions. He has lived in Silicon Valley since 1979. Formerly he was the Chief Strategy Officer (Consulting) at Curl Inc., before which he spent ten years at Oracle Corporation and was the Group Vice President, Systems Architecture and Technology till 2002. He was responsible for setting Oracle's core database and application server product directions and interacted with customers worldwide in translating future needs to product plans. Before that he spent 16 years at IBM. He blogs at http://jnandash.ulitzer.com.

@DevOpsSummit Stories
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, which can process our conversational commands and orchestrate the outcomes we request across our personal and professional realm of connected devices.
The need for greater agility and scalability necessitated the digital transformation in the form of following equation: monolithic to microservices to serverless architecture (FaaS). To keep up with the cut-throat competition, the organisations need to update their technology stack to make software development their differentiating factor. Thus microservices architecture emerged as a potential method to provide development teams with greater flexibility and other advantages, such as the ability to deliver applications at warp speed using infrastructure as a service (IaaS) and platform as a service (PaaS) environments.
ChatOps is an emerging topic that has led to the wide availability of integrations between group chat and various other tools/platforms. Currently, HipChat is an extremely powerful collaboration platform due to the various ChatOps integrations that are available. However, DevOps automation can involve orchestration and complex workflows. In his session at @DevOpsSummit at 20th Cloud Expo, Himanshu Chhetri, CTO at Addteq, will cover practical examples and use cases such as self-provisioning infrastructure/applications, self-remediation workflows, integrating monitoring and complimenting integrations between Atlassian tools and other top tools in the industry.
The use of containers by developers -- and now increasingly IT operators -- has grown from infatuation to deep and abiding love. But as with any long-term affair, the honeymoon soon leads to needing to live well together ... and maybe even getting some relationship help along the way. And so it goes with container orchestration and automation solutions, which are rapidly emerging as the means to maintain the bliss between rapid container adoption and broad container use among multiple cloud hosts. This BriefingsDirect cloud services maturity discussion focuses on new ways to gain container orchestration, to better use serverless computing models, and employ inclusive management to keep the container love alive.
As DevOps methodologies expand their reach across the enterprise, organizations face the daunting challenge of adapting related cloud strategies to ensure optimal alignment, from managing complexity to ensuring proper governance. How can culture, automation, legacy apps and even budget be reexamined to enable this ongoing shift within the modern software factory? In her Day 2 Keynote at @DevOpsSummit at 21st Cloud Expo, Aruna Ravichandran, VP, DevOps Solutions Marketing, CA Technologies, was joined by a panel of industry experts and real-world practitioners who shared their insight into an emerging set of best practices that lie at the heart of today's digital transformation.