Welcome!

@DevOpsSummit Authors: Pat Romanski, Liz McMillan, Zakia Bouachraoui, Yeshim Deniz, Carmen Gonzalez

Related Topics: FinTech Journal, Containers Expo Blog, Cloud Security, @DevOpsSummit

FinTech Journal: Article

Beyond DevOps: Security vs. Speed? | @DevOpsSummit #APM #DevOps

Several problems arise when the harm of software failure cannot be treated as an unbound variable

Fail fast, fail often. Yeah, but the first failure blew up the satellite. Well, this is just a photo-sharing app..not rocket science. Okay, but your photos are accessed by users who have passwords that they probably use for other things..and aren't some photos as important as satellites?

Several problems arise when the harm of software failure cannot be treated as an unbound variable. Here are some thoughts on two. I'll write more on two more (one cognitive, one computational) later.

Problem 1: Identity Persists Across Non-Obviously Coupled Systems (So the Stakes Are Higher Than Your Application)
Worse: security failures cascade well beyond physically contiguous realms (if root then everything) into physically decoupled systems via informational (shared passwords, mailboxes) or physical-but-accidental (power cut then reboot) channels. The brilliant and terrifying Have I been pwned? tool -- to say nothing of the astonishing air-gap-annihilating Stuxnet [pdf] surfaces the obvious but easy-to-forget truisms that simply not having data that should not be accessed by X on the same disk as data that can be accessed by X is not good enough, and that the danger posed by access to one application may be slim compared with the danger posed by access to something more serious via the identity compromised by an in-itself non-dangerous breach.

So even if 'fail fast' is okay for your application, it may not be okay for your users. The result: natural tension between the ideal of continuous delivery -- or even Agile more broadly, or even heavily iterative development in general -- and security.

And while one of the major insights of Agile is that the best refiner is the real world (as opposed to the limited imagination of the planners), one of the major embarrassments of InfoSec is that 95% of security breaches involve human error. For Agile, failure is falling until you can walk. For InfoSec, failure is letting the terrifying cat out of the poorly-designed bag. Post-breach, maybe you've started to salt your hashes (congrats, you're more cryptographically sophisticated than Julius Caesar) but your users' passwords are in the wild.

Problem 2: You Have Actual Human Enemies (So Something Smarter Than Chance Is Trying to Outsmart You)
On sheer randomness, the Internet is getting more dangerous (Akamai records crazy DDoS increases over the past year - 122% for application-level (OSI Layer 7) attacks alone??). But the really scary problem is that real, smart, often well-funded humans are trying to make your software do what you didn't design it to do. For most failures, the enemy is "imprecise requirements" or "poor algorithm design" or "inadequately scalable environment" (or even just 'blundering users'); for security failures, the enemy is malicious engineers.

This is the meatiest bit of the (otherwise slightly theatrical) Rugged Manifesto:

I recognize that my code will be attacked by talented and persistent adversaries who threaten our physical, economic and national security.

Yeah. So engineer.add(<malice, talent, persistence>), return ???? -- and multiply(????, world.get(amountEatenBySoftware) = ????!!!!!

If DevOps is a management practice, then a risk of ????!!!!! is pretty much unacceptable.


None of this, of course, means that Agile isn't an awesome idea. Nor am I suggesting that security can't be baked in to an iterative, continuously improving process - certainly it can, but on the face of it this seems to require a bit of finagling. And of course the proper way to address security will always be risk analysis, with a good lump of threat analysis included in any measure of technical debt.

I'd love to take some taxonomy of software errors (maybe regarding security in particular) and cross-tab cost per error type with cycle time (i.e. length of cycle during which each error that cost d dollars was introduced against cost d), normalizing by estimated technical debt accrued during each cycle (assuming somebody measured that at the time, which probably didn't happen). But maybe someone has done that (definitely seen lots of costs by error but not correlated with cycle time), and (since technical debt is kind of a guess anyway) maybe anecdotes are a better gauge of the security cost of "shift left" anyway.

Anyone have any experiences they'd like to share?

More Stories By John Esposito

John Esposito is Editor-in-Chief at DZone, having recently finished a doctoral program in Classics from the University of North Carolina. In a previous life he was a VBA and Force.com developer, DBA, and network administrator. John enjoys playing piano and looking at diagrams, and raises two cats with his wife, Sarah.

@DevOpsSummit Stories
Daniel Jones is CTO of EngineerBetter, helping enterprises deliver value faster. Previously he was an IT consultant, indie video games developer, head of web development in the finance sector, and an award-winning martial artist. Continuous Delivery makes it possible to exploit findings of cognitive psychology and neuroscience to increase the productivity and happiness of our teams.
The current environment of Continuous Disruption requires companies to transform how they work and how they engineer their products. Transformations are notoriously hard to execute, yet many companies have succeeded. What can we learn from them? Can we produce a blueprint for a transformation? This presentation will cover several distinct approaches that companies take to achieve transformation. Each approach utilizes different levers and comes with its own advantages, tradeoffs, costs, risks, and outcomes.
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a member of the Society of Information Management (SIM) Atlanta Chapter. She received a Business and Economics degree with a minor in Computer Science from St. Andrews Presbyterian University (Laurinburg, North Carolina). She resides in metro-Atlanta (Georgia).
Contino is a global technical consultancy that helps highly-regulated enterprises transform faster, modernizing their way of working through DevOps and cloud computing. They focus on building capability and assisting our clients to in-source strategic technology capability so they get to market quickly and build their own innovation engine.
DevOpsSUMMIT at CloudEXPO will expand the DevOps community, enable a wide sharing of knowledge, and educate delegates and technology providers alike. Recent research has shown that DevOps dramatically reduces development time, the amount of enterprise IT professionals put out fires, and support time generally. Time spent on infrastructure development is significantly increased, and DevOps practitioners report more software releases and higher quality. Sponsors of DevOpsSUMMIT at CloudEXPO will benefit from unmatched branding, profile building and lead generation opportunities.