Welcome!

@DevOpsSummit Authors: Liz McMillan, Zakia Bouachraoui, Pat Romanski, Elizabeth White, Yeshim Deniz

Related Topics: @DevOpsSummit, Linux Containers, Containers Expo Blog

@DevOpsSummit: Blog Post

Four Key Takeaways for Application Performance and Monitoring | @DevOpsSummit #APM #DevOps

The latest Guide to Performance & Monitoring covers the verifiable & unknowable sides of building & maintaining performant apps

Designing for performance is absolutely essential; but runtime is so crazy a variable that we can reasonably blame too-early optimization for a non-negligible chunk of lousy UX and unmaintainable code.

The latest Guide to Performance and Monitoring covers both the static and dynamic, the verifiable and the unknowable sides of building and maintaining performant applications.

As Tony Hoare notoriously observed, "Premature optimization is the root of all evil:" that is, the benefits of absolutely maximal optimization are usually much lower than the increased cost of maintenance and debugging that results from the brittleness caused by that optimization. On the other hand, the natural tendency of OOP to prioritize form over performance can generate a codebase that is highly readable but partitioned such that performance-oriented refactoring may prove extremely difficult. To help you steer between the Scylla of overeager optimization and the Charybdis of runtime-indifferent code structure, we've split this publication between ways to design performant systems and ways to monitor performance in the real world. To shed light on how developers are approaching application performance, and what performance problems they encounter (and where, and at what frequency), we present the following points in summary of the four most important takeaways of our research.

1) Application code is most likely to cause performance problems frequently; database performance problems are most challenging to fix:

DATA: Frequent performance issues appear most commonly in application code (43% of respondents) and in databases second most commonly (27%). Challenging performance issues are most likely to appear in the database (51%) and second in application code (47%).

IMPLICATIONS: Enterprise application performance is most likely to suffer from higher-level, relatively shallow suboptimalities. Deep understanding of system architecture, network topology, and even pure algorithm design is not required to address most performance issues.

RECOMMENDATIONS: Optimize application code first and databases second (all other things being equal). On first optimization pass, assume that performance problems can be addressed without investing in superior infrastructure.

2) Parallelization is regularly built into program design by a large minority (but still a minority) of enterprise developers:

DATA: 43% of developers regularly design programs for parallel execution. Java 8 Parallel Streams are often used (18%), slightly more frequently than ForkJoin (16%). ExecutorService was most popular by far, with 47% using it often. Race conditions and thread locks are encountered monthly by roughly one fifth of developers (21% and 19% respectively). Of major parallel programming models, only multithreading is often used by more than 30% of developers (81%).

IMPLICATIONS: Enterprise developers do not manage parallelization aggressively. Simple thread pool management (ExecutorService) is much more commonly used for concurrency than upfront work splitting (ForkJoin), which suggests that optimization for multicore processors can be improved.

RECOMMENDATIONS: More deliberately model task and data parallelization, and consider hardware threading more explicitly (and without relying excessively on synchronization wrappers) when designing for concurrency.

3) Performance is still a second-stage design consideration, but not by much:

DATA: 56% of developers build application functionality first, then worry about performance.

IMPLICATIONS: Extremely premature optimization is generally recognized as poor design, but performance considerations are serious enough that almost half of developers do think about performance while building functionality.

RECOMMENDATIONS: Distinguish architectural from code-level performance optimizations. Set clear performance targets (preferably cascading from UX tolerance levels) and meet them. Optimize for user value, not for the sake of optimization.

4) Manual firefighting, lack of actionable insights, and heterogeneous IT environments are the top three monitoring challenges:

DATA: 58% of respondents count firefighting and manual processes among the top three performance management challenges. 49% count lack of actionable insights to proactively solve issues. 47% count rising cost and complexity of managing heterogeneous IT environment.

IMPLICATIONS: Performance management is far from a solved problem. Monitoring tools and response methods are not providing insights and solutions effectively, whether because they are not used adequately or need feature refinement.

RECOMMENDATIONS: Measure problem location, frequency, and cost, and compare with the cost (both monetary and performance overhead) of an additional management layer. Consider tuning existing monitoring systems or adopting new systems (e.g. something more proactive than logs).

More Stories By John Esposito

John Esposito is Editor-in-Chief at DZone, having recently finished a doctoral program in Classics from the University of North Carolina. In a previous life he was a VBA and Force.com developer, DBA, and network administrator. John enjoys playing piano and looking at diagrams, and raises two cats with his wife, Sarah.

@DevOpsSummit Stories
"DevOps is set to be one of the most profound disruptions to hit IT in decades," said Andi Mann. "It is a natural extension of cloud computing, and I have seen both firsthand and in independent research the fantastic results DevOps delivers. So I am excited to help the great team at @DevOpsSUMMIT and CloudEXPO tell the world how they can leverage this emerging disruptive trend."
Digital transformation is about embracing digital technologies into a company's culture to better connect with its customers, automate processes, create better tools, enter new markets, etc. Such a transformation requires continuous orchestration across teams and an environment based on open collaboration and daily experiments. In his session at 21st Cloud Expo, Alex Casalboni, Technical (Cloud) Evangelist at Cloud Academy, explored and discussed the most urgent unsolved challenges to achieve full cloud literacy in the enterprise world.
CloudEXPO | DevOpsSUMMIT | DXWorldEXPO Silicon Valley 2019 will cover all of these tools, with the most comprehensive program and with 222 rockstar speakers throughout our industry presenting 22 Keynotes and General Sessions, 250 Breakout Sessions along 10 Tracks, as well as our signature Power Panels. Our Expo Floor will bring together the leading global 200 companies throughout the world of Cloud Computing, DevOps, IoT, Smart Cities, FinTech, Digital Transformation, and all they entail. As your enterprise creates a vision and strategy that enables you to create your own unique, long-term success, learning about all the technologies involved is essential. Companies today not only form multi-cloud and hybrid cloud architectures, but create them with built-in cognitive capabilities.
DevOpsSUMMIT at CloudEXPO, to be held June 25-26, 2019 at the Santa Clara Convention Center in Santa Clara, CA – announces that its Call for Papers is open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's largest enterprises – and delivering real results. Among the proven benefits, DevOps is correlated with 20% faster time-to-market, 22% improvement in quality, and 18% reduction in dev and ops costs, according to research firm Vanson-Bourne. It is changing the way IT works, how businesses interact with customers, and how organizations are buying, building, and delivering software.
The benefits of automated cloud deployments for speed, reliability and security are undeniable. The cornerstone of this approach, immutable deployment, promotes the idea of continuously rolling safe, stable images instead of trying to keep up with managing a fixed pool of virtual or physical machines. In this talk, we'll explore the immutable infrastructure pattern and how to use continuous deployment and continuous integration (CI/CD) process to build and manage server images for any platform. Then we'll show how automate deploying these images quickly and reliability with open DevOps tools like Terraform and Digital Rebar. Not only is this approach fast, it's also more secure and robust for operators. If you are running infrastructure, this talk will change how you think about your job in profound ways.